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ABSTRACT 

A single server queuelng system with Polsson arrival 

at rate X and a finite queue capacity N is considered. 

The service can be performed using one of K available 

service rates y. ^ Vj ^  ••• Z. Vv  •    When service rate y. 

is in effect the service time Is a random variable exponentially 

distributed with expected service time 1/u. , and a cost rate 

c(u. ) is incurred. For each customer served, a reward of 

A will be earned. The problem Is to choose service rate in 

order to minimize the expected discounted or expected long 

run average cost. We first formulate the problem as a semi- 

Markov decision process with the state as the number of 

customers in the system.  It Is then shown that the optimal 

policy Is switchover or reverse switchover depending upon 

whether or not the system is profitable. A switchover policy 

is a policy which uses higher rates in the higher states and a 

reverse switchover policy uses lower rates In the higher states. 
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INTROOUCTION 

1.1    Description of Problem 

Optimization problems In queuelng have received a large amount of 

attention during the past  few years.    Up to a decade ago most of the works 

In queuelng were concerned about the descriptive aspect of the problem, 

namely deriving mathematical characteristics and  structure of the system 

such as stationary distributions, waiting time distribution, expected number 

of people in the system, etc.    In almost all branches of Industries where 

queuelng plays a role,   in addition to the descriptive models, the manager Is 

confronted with the optimization of design and control of the system.    With 

the Introduction of Markovlan decision processes and its relation with 

queuelng the optimization of queuelng system gained a new momentum. 

In a general optimization problem, choosing a policy or value of a 

variable In order to minimize a function la sought.    In queuelng these 

variables can enter In the arrival stream or service facility.    The latter 

la encountered more In practice and therefore, more attention Is given to 

these problems, but a number of works can be found which controlling the 

arrival process is the target of the optimization.    In some case even 

controlling both arrival and service variables have been the target. 

In this thesis we are concerned with the second type of problem.    Namely, 

the decisions sre made on the service facility. 

We are considering a queuelng system with a single servicing facility 

and a limited apace N for waiting customers. Those customers who, upon 

arrival, find the system with N persons do not stop. The arrival stream 

is a Poisson process with rate X . The service can be performed with one 

of the K existing service rates w, .1 u, ^ ... ^ y . When service with 

rate   p^    la used the service time is a random variable which is exponentially 
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distributed with expected servlf. .ime  I/., . T-.e  .fiver can switch a 

service rate to another at the time of an arrival or at the time of a departure. 

These switches, if made, must optimize the overall expected discounted or 

average cost for the given cost structure.  The cost structure considered is 

as follows, 

(a) A service cost rate c(^. ) , the cost of servicing at rate \i.   . 

It is assumed that c(ii, )  is nondecreaslng in u. 

c(y1) <^ c(n2) .1 ... £ c(nK) . 

(b) The server will receive a revsrd A for each customer he serves. 

With this cost structure the optimal policy is found to have a simple form. 

If the state of the system is defined as the number of people in the system, 

then, e.g., in the case of two rates y. < u9 t It will be shown that the 

optimal policy prescribes u.  up to a state J > 0 j^ J ^ N , and w- for all 

states higher than J , which we will call a switchover policy. The case of 

K j^ 2 service rates is also analyzed and a simple policy is found. 

With the same cost structure the case of "hesitating customers" is also 

analyzed, where the arriving customer will stop with a probability p. if 

there are 1 person in the system. It is shown that for p. monotone the 

same type of policy is optimal. 

Although complete results are not found for the expected discounted 

model. Chapter II la devoted to this model since some of the results In this 

case are needed in the average cost case. 

1.2 Review of Literature 

As was mentioned in the previous section the problem of optimization 

in queueing has been given a considerable amount of attention during recent 

years. 



In the earliest papers assumptions were made about  the class of feasible 

policies and within this restricted  class the best policies were found.    For 

example In Yadln and Naor [18],  they find the optimal queue size at which to 

turn the server on assuming that the policy is to turn the server on when 

queue length reaches a certain level. 

Heyman [ 3 ] In his work considered the model of Yadln and Naor and 

attempted to find the form of an optimal policy In an M/G/l queue without 

making a priori assumptions about the policy. 

Thatcher   117J  conslderes an M/G/l queue with two service rates.    He does 

not assume a queue limit but does assume a holding cost which is dependent 

upon the number of customers in the system.     He first finds the best switch- 

over policy and then he proves Its optlmality among all policies. 

In general when the form of optimal policy is the target,the theory of 

stochastic decision processes plays an important role. 

As was mentioned before a decision might be made on arrival, service or 

both.    Work of Miller [10], Llppman and Ross  [8] are of the first category. 

In Miller the decision is made to reject or to accept an arrival which can 

be from one of the    n    possible types, where the nth type customer offers 

a reward    R The queueing system he considers is M/M/C, where no queue is 

allowed.    Llppman and Ross generalize Miller's problem to a general arrival, 

service, and reward distributions with an infinite number of arrival types 

but only one server.     In both cases simple policies are found in order to 

maximize the expected average return. 

Work of Crablll  [2], McGill [9] and Mitchell [11] are of the second 

category where the decisions are made on servicing facility. 

Crablll found the optimal servicing rates for an Infinite queue.    The 

system he considers is M/M/l and the policy he finds Is switchover. 

McGill considers a multi-channel queue with changing number of servers 

as a function of persons in the system. 
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Mitchell, in the work stllJ ir progress, considers a single server 

queue with Poisson arrivals, where each customer in the system requires a 

random length of service which becomes known at the time when customer enters 

service.  The decision is made as to which of two rates to use. 

Kllmov in [ 7 ] considers an m servers queue with nonstationary Poisson 

arrivals and nonstationary exponential service. One of the cases considered 

there is where the arrival and service rate are not known but must be found 

in order to optimize an objective functlor1. The method used is optimal 

control. 

1.3 Notations and Definitions, Mathematical Background 

In the next chapters we will formulaie our queufeing problem ns a semi- 

Markov decision process. The early contributers of these processes are 

Jewell [6 ] and Howard [4], [ 5 J and recently Ross [12], [13]. The notations 

and definitions used here are of Ross. 

Definition! 

A aemi-Markov deoiaion prooesa  is a process which is observed in each 

review point and is found to be in one of a possible number of states. The 

set of all possible state» is called the state space    S . After observing 

the state an action, a , must be maae from a set of possible actions. The 

set of all possible actions is called the action space   A . Whenever the 

state la 1 and action a is chosen, then 

(I) A transition to state J occurs with the probability P1j(a) • 

(II) If the next state of the system Is j , then the time until the 

transition from 1 to J Is a random variable with distribution 

(III) The action a taken In state 1 will specify the cost incurred 

In the next stage of the process. 
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A policy  is a rule fcr cioosing actions when the current state and the 

past history of the orocess is given. 

A atationary ■policy  is a nonrandomized policy where the action chosen 

at a time only depends on the state of the process at that time. 

Average Cost Results 

Let Z(t) be the total cost incurred by time t and Z  be the cost 

incurred during the nth f.ransition interval and T  be the length of this n 

Interv  :.     For eac'.1 policy    TT    and state    i  , we define 

(1.1) *>> ■ Jini EJrr /xi -'] 

and 

(1.2) r(i) - lim 
n-H» 

E 
it I vxi"1 

E 
j-l J 

where,    X      is  the initial state of the system.    Although,    41      represents 

2 
the long-run average expected cost,  it turns out that    $      is a "nirer" 

criteria,  in analytical sense,  to work with.    It also turns out that under 

some reasonable conditions these two criteria are equal. 

Let    T    be the time of the  first return to state    i  ,  and    f    any 

stationary policy and suppose that 

(1.3) Ef [T/Xj^ - 1]   < » . 
| ; 

Then It can be shown (see Ross [12]) that 

♦ J(i) - <^(i) 
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2 
A method to find an optimal stationary policy using $       is given in 

[i2].  Thus, if (1.3) is satisfied then, this same policy Is optimal for ^ 

Now, let  c(l,a)  denote the expected cost Incurred in a transition 

interval that begins with action a being taken in state  i .  Also, let 

t(i,a)  denote the expected length of such a transition interval.  It should 

be noted that, when the relevant criteria is given by Equation (1.2), then 

without loss of generality we may assume that the cost Incurred iu such an 

interval (and the length of such an Interval) is with probability one 

c(l,a)(T(i,a)) .  This will be assumed here on. 

Note that this implies that  V (1) , the minimal total expected a- 
a 

discounted cost starting  from state    1   ,  ratifies 

(1.4) V  (1)  - min k(i,a) + e"aT(1'a)  7 PJJ(a)V (i)l   , 1  > 0 ,4) Va(l)  - min pi,a) + e"aT(1'a)  £ P^^^O)} 

The  following theorem may be   found  in Ross  [13]. 

Theorem: 

If c(i,a)  Is bounded, and if there exists an N < » such that 

|V (i) - Va(0)| < N    for all a , all 1 

then,  there exists a bounded function    h(l)    and a constant    g    such that 

|c(l.a) +    I 
i j-o 

(1.5) h(i)  - min jc(l,a) +    I    P^ (a)h(j) - gT(l,a)J i>_0 

* 
and if IT  is a policy which, for each 1 , prescribes an action which 

minimizes the right side of (1.5) then 

2 ,.v    .2 
TI g - «TftU) = min *-W    a11 i 1 0 . 

IT TT 

This  theorem will be used in later chapters. 
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DISCOUNTED MODEL 

2.1     Introduction 

In this chapter we will formulate the queueing system as a semi-Markov 

decision process.    We assume  a queueing system with Polsscn arrivals at 

rate    >   ,   and a single exponential service facility.    The service facility 

can perform its duty using one  of  the    K    available  service  rates, 

y    <^ p     <^ . . .  j^ Vi     .    When service rate    y.     is  In effect,   the  service  time 

is a  random variable which is exponentially distributed with expected service 

time     l/^i.   •     Those arrivals  finding systera with    N    persons will not stop 

and will be  lost.     In other words  the queueing  facility  can only hold    N 

persons  at  a  time.     The problem will be  formulated in  two  cases.     First,   the 

operator  can only switch  at  the   time  of departure of a customer  in the system. 

Second, where the operator can switch at either an arrival or at a departure 

time of a customer.    These switches,  if made, must minimize the overall expected 

a-discounted  cost of the system.     The  following  cost  structure  is considered: 

(I) a service cost rate    c(vO   ,  the cost rate incurred when service 

rate    y.     is In effect.     It is assumed that    cdO     ^s nondecreaslng 

in    yk . 

(II) For each customer served a reward of    A   will be earned. 

In Section 2  the problem will be  formulated as  a semi-Markov decision 

process  and  in Section 3 some properties of optimal value  function defined in 

Section 2 will be studied.    In Section A some special cases will be analyzed 

and a sufficient condition for  the exlstance of a simple  switchover policy 

will be given. 



2.-1  Seiiii-Markov Dccisl.n for ijneueing 

We must define the state of the system, the available actions, and the 

probabilistic law or the law of otion. The state of the system is defined 

as the number of customers in the queue. The state space S , is thus a set 

of N + 1 nonnegative integers  S ■ (0,1, ..., N} . The action space K    is 

defined as a  set of K nonnegative integers K  ■ (1,2, ..., K) , where 

action k corresponds to rate p. . 

The  transition probabilities,  if < witching is only allowed at the 

departure points can be easily found to be a? follows: 

xV 

a 

(2.1)     P^Ca) 

t+1 

AV 

J   < i  -  I      all    i ^ 1 

t - 0,1 N-i-1        J-i + t-1        i>l 

t-N-i   (X + M  ) a 
t+1 J  - N - 1 

J  - 1 

i >_ 1 

i >_ 1 

1-0 

If switching is allowed in both departure and arrival points then 

J^i-l.l+l        i>.l 

A + V. 

Va) 

A + y 

J  -  1 - 1 

J   -  1 + 1 

J  -  1 

i  >  1 

1 >  1 

i - 0  . 

When the first set of transition probabilities are in effect then we will 

say that we are in Case 1, and similarly for Case 2. Now for Case 1, if 



V  (i)     is  the optima!  v.ilu-?   1 unction as defined  in Section  3 of the previous a 

chapter,   then 

|c(u  )                  ' u    N-i-1        \Ka 

V_(i) - min <—=- - A + e      a      I      ^-^ Vji + J -  1) 
a    I ^a j-O     (A-Hwa)J+1    a 

(2.3) 

a 

+ e      aV (N - 1)      I 
^u 

j'N-i   (X + U   )J+1I 
i -  1 N-l 

V  (K)  • mln 
a 

a 
 — - A + e      aV  (N - l)j 

^a 

VJO) - e    AV (1) a a 

c(ua) 
where, A    is the cost  incurred in a transition interval of length 

a 
l/u  , the expected transition time when rate u  is in effect.  In other a a 

words,    V (i)    is the minimal expected a-discounted cost starting from state 

i   , where the operator can only switch at departure points.    In the case 

where switching is allowed at any time  (that is,  in Case 2)  the optimal 

value function    V (1)    satisfies 
o 

va(i) 
|C(M   )  -  u  A             ^ + %       x 

mln \     .   .    — + e * T—  V  (1 + 1) 
.     X + p si a X + u      a a 

(2.4) 

X + U«       "a      - 

V (N) - mln a 
a 

)c(wa) v- 
I =- - A + e      "V (N - 1)( 
(  ua a ^ 

i  ■  1,   *«.,  N-l 

V  (0) - e    AV(1)   . a 
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Of course. V (i)  and  V (i)  arc different, 
o a 

2.3    Properties of  the Optimal Value Function 

In this section some  properties of the optimal value  function    V  (i) 

will be studied. 

Lemma 1: 

c(u .) 
V (1) > 0 for all i , if and only If — > A for all a 

Proof: 

The proof Is by Induction, define 

(2.5) V (1,1) - mln 
a 

a 

(cCu) a 
- A 

and recursively 

}C(ü) N-l-1    " u XJu 
 2- _ A +      j;      e      * 

Ua                     J-0 (x + u )J+1   a 
V^Ci + j  - l,n -  1) 

(2.6) 
 oi_ 

+ e      aV a(N - l.n - 1)      I 
xV 

j-N-1   (X + u )J+1| ' 

Functions    V (l,n)    will converge to    V (1)    as    n    goes to infinity, see   [13]. 

c(u  ) 
(i)      If *> A    for all   a , then clearly    V (1,1)  > 0 . 

Now assume    V (l,o)  >_ 0    for all    m ^ n - 1  .    Then, by induction assumption 

all terms In the right side of  (2.6) are nonnegativo.    Hence,    V (l,n)  > 0 
a     — 

for all n , and in the limit V (i) > 0 . 
a   — 

c(u ) 
(11)  If V (1) ^ 0 , for all i then  ! > A for all a . 
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Assume the contrary,   that      < A    for some    k   ,  then    V(i,l)  + c  < 0 

for some    e > 0  , and using this rate    w.     In all states implies 

V (i,n)  < -c    for all    1    and    n  , or In  the  limit    V (i)   < 0    which contradicts o a 

the assumption. 

Q.E.D. 

c(>ik) 
An Immediate conclusion of this lemma is if   < A for some k 

^k 
then V (i) < 0 for all 1 . 

a 

Lemma 2: 

C(M ) 
V (1) is nonincreaslng if and only if   < A for some a . 

Proof: 

We prove this lemma by Induction as of the previous lemma. 

c(u ) 
(1)  If   < A then V (i) la nonincreaslng. 

M, 

From Equation (2.5) 

Va(l,l) - Va(l + 1,1) for all    i > 1 

and 

f-i). TZ V (0.1) - •   x       •/v(iti) a 

*                                                           (c(wa) ) where,    y^    is the rate which minimizes    J = A>  .    By assumption 
pa 

V(l,l)   < 0 .    Hence,    Vo(0,l)  > V(l,l) - V(i,l)    i  > 1    and the lemma is 

true for    n ■ 1 .    Now assume the lemma is true for all    m ^ n - 1  ,  then 

J 
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1C(M_) M.  N-t-1 XJw. 
V.(l.a) - «in {^- - A + e    ^      f ^1 V^1 + J " L« - D 

(2.7) 
«-"    . ;^r"ft^     A (x + ^

+1'0 

y - x\ 
+ e      aV(N-l,n-l)       X       -T;lj 

0 J-N-l (X + vmy 

- -2- 1 
c(y ) M. N-l-2       xJp. 

V (1 + l.n)  - «in {—*- - A + e    ^      £ "   .       ^^ Va(l -M .n - 1) 
a    /Ua ^o   (x + ua)j+1  a 

(2.8) 
- -2- 1 

+ e      ^(N - l,n - 1) I 
j-N-1-1 (X + Pa)J+1J ' 

For any fixed    a  ,  the right side of  (2.7)  is larger than tlw right side of 

(2.8) by induction assumption.    Hence, 

V (l.n) > V (i + l,n) for all   n    and 
a —   a 

and in the limit V (i) > V (i + 1) . 
a   — o 

c(u ) 
(li) If V (1) < V (1 + 1) then  =- > A for all a . 

a     a M«  ',~ 

c(wk) 
If not let k be an action such that   < A . Then V(i,n) < 0 , 

and by part (1) of the proof V (i + 1) < V (1) is a contradiction. 
a     — o 

3: 

c(u ) 
V (i) is nondecreasing if and only if   > A for all a . 
a Ua  - 

Proof; 

Proof of this lemma is similar to the previous .one, and is omitted 

here. 
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Remark; 

Lemmas 1,  2,  and 3 can be proved for  functions    V (1)   .    The proof is 

similar to those lemmas and Is omitted here. 

The following lemma will be useful In the next chapter. 

Lemma A: 

(a) There exists an M < » such that 

|V (1) - V (0) | < M     for all o , and all 1 . 

(b) There exists an M < <» such that 

|V (1) - V (0) | < M     for all a , and all 1 . 

Proof: 

(a) Let  (r., ..., r») be the optimal service rates used in states 

(1, ..., N)  then the embeded Markov chain corresponding to departure points 

Is Irreducible and positive recurrent, see (2.1).  Let K. be the expected 

number of transition starting from state 1 before reaching state 0 , then 

K. < » for all 1 .  Let K - max K. , for the case V (1) < 0 
i .1 o   — 

(c(p )   I 
V (1) > K min { — - A? + V (0) 

(c(w )   ) 
Va(l) - Va(0) >_ K min \-^- " A  . 

The left side of the above Inequality is also bounded by    0  .    Hence 

|V  (1)   - V  (0)|   < K min |^ - A! 
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for the case    V   (1)   > 0 
a        — 

fc(u  ) 
V  (i)  - V  (0)   < K uax { — - AI 

0        "        a    (   ^a ! 

or 

|Va(i) - Vo(0)|   <Kmax hr1-" A 

Now Ißt 

M - max <K 
c(na) 

min ' 
a    V Wa 

-A I     ;   K max <  
/ a    ha 

then 

(2.9) |Va(l)  - Va(0)|   < M  . 

(b)    The proof of this part  Is similar to the first part using the 

transition probabilities  (2.2), and arguing in the same way. 

Q.E.D. 

2.4    Some Properties of Optimal Policy 

In this section some special cases will be analyzed and a conditional 

theorem for the exlstance of a switchover policy will be given.    We define 

f (1)    to be the optimal action at state    1  .    The following lemmas and 

theorems are proved for Case 1. 

Lemma 5; 

*                c^a^ * 
If f (N) - k and A >   fojc  some a , thtn f (i) £ k  for all 

a 
i <_H ,  in other words the largest rate is used in the largest state. 
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Proof: 

By assumption 

c(Mk) 
a 

- A + e V (N a -  1) 
c(ua) 

— v. 
A + e  % (N - 1) a all a f< k 

Let    g(l,a,k)    be the difference between two expected future costs when 

action    a    or    k    is taken In    1  ,  then 

(2.10)      g(N 
c(pa)      C(Mk)       / 

,a,k)  - — ■ + V 
^a ^k 

M. ^k 
e - e /V(N - 1)   . 

By assumption g(N,a,k) :> 0 for all a v< k . Assume In the contrary that 

there exists state i such that f (i) • a > k then 

c(u )  c(w.)  N-l-1 
gd.a.k)--^---^* I 

wa    vk j-0 

x3u. 

(X + u )J
+l 

<» 

(2.12) V (i + J - 1) + V (N - 1) I 
J-N-i 

-    ^    ■.' ""I 
(X + P,)^

1    J 

xV 
o 

(x + „ )J
+1 

U P. 
where    g(i,a,k)  < 0 .    In (2.10) substitute for   e and    e the 

following: 

a a 

e      «-e      *    I 
X ^a wk ^k                e           ■ 

xJu. 

J-0   (A + u  )J+1 
I 

J-0   (A  + uk)J+1 
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then 

g(i,a,k) - g(N,a,k) 
N-i-1 

I 
J-0 

A - -^        i a 

(x + u )J
+1 

(X + pk) 
j+l 

(2.13) 
[Va(i + J - 1) - Va(N - 1)1 . 

For nonlncreaslng V (i) , V (1 + J - 1) - V (N - 1)  is nonlncreaslng and 

nonnegative. And the function h(j) defined as 

h(j) 
xj. 

g 
X3^ 

a 

(x + va) J+l (X + lik) 
J+l 

a > k 

changes sign from positive to negative (note that, function 
a 
x 

S(x) - 
X^x 

J+l 
e    is increasing for J £ J , some J , 0 < J ^ N 

(X + x)- 

and decreasing for j > J) and since 

I   h(j) 
J-0 

a a 

' wk 
- e  K > 0 

then the positive terms in (2.13) dominate the negative terms.    Hence, 

g(l,a,k) - g(N,a,k)  > 0 

g(i,a,k)  >.g(N,a,k)  > 0 

which contradicts the assumption that    f (i) - a 

Q.E.D. 

Lemma 6: 

Let there exist an    I    such that the action space    K ■  {1,2,   ..., K} 

can be partitioned into two subsets    K.  - (1,2,  ...,  1}    and 
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K2 • {I + 1, ..., K} where, for all a c K. ,   < A and for all a e K- , 

c(u ) a 

 =- >_ A . Then, the optimal policy does not Include any action from K . 
a 

Proof: 

* 
From Lemma 5 if f (N) " a and a e K. then optimal policy does not 

Include elements of K. . Let us assume f (N) - a and a c K. then 

a 

(2.1A)        V (N) 2- - A + e  aV (N - 1) 

substract V (N - 1) from both sides of (2.14) a 

+ (e" ^ - l), 
c(ua) 

(2.15)  V (N) - V (N - 1) -  — - A + \e  a - l/V(N - 1) . a     a        M 

c(V) 
By Lemma 2 V (N) - V (N - 1) < 0 and by assumption A > 0 , since 

_^ * 

"  ^a 
e   - 1 < 0 , V(N - 1) < 0 then, (2.15) is impossible. Therefore, a 

cannot be an element of K- . 

Q.E.D. 

Theorem 1; 

* * 
If    N - 2    then    f (1) je f  (2)   , i.e., the optimal policy is switchover. 

Proof; 

The proof immediately follows from Lemma 5. 

Theorem 2; 

c(wa) 
If N ■ 3 and y < A , and   < A for some a , then the optimal 

I 

policy is switchover, I.e., 
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f*(l) < f*(2) < f*(3) 

Proof; 

*     *        * .   *. . 
By Lemma 5 f (1) ^ f (3) and f (2) ^ f (3) . We only need to show 

f*(l) <  f*(2) . 

Assume f (1) » k , then for any a < k 

c(p.)  c(w ) 
g(l,k,a) - —* -3- + 

g 

Jk   ^yk e X + p.        X + u 
a     a e V (0) 

a 

Aw 

a + Mk) 

g 

k    ' uk 
7e 

XVJ. 

g 

(A + y )" 
a 

va(i) 

+ V(2) I 
J-2 

xjw, 
g 

a + .k)^
1 

X
^a e 

(X + ^
+1 

By assumption g(l,k,a) < 0 . We now show that g(2,k,a) < g(l,k,a) < 0 

g(2,k,a) 

g 

^k       " \ 

g 

ya            % • r     /I \ 

A + 

4. 

^k                  X+Va 

g 

iwk     ' uk     Mi. 
g" 

"ya Va(2) 

j.  1 

.(X + Uk)2 

t   fi\       V 

2 
(A + ya)Z 

x ^k       \ 

g ' 

""' 3i2 (X + ^ 
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g(2,k,a) - gCl.k.a) - 

a a 

X + \ e    " A + ^a e 
lva(i) - voi(o)] 

Aw k      Mk 
 s: e 

(X + uk)' (X 
(2) - Va(l)] 

since V(l) < V(0)  and V(2) < V(l)  and 

yk     ^k    ^a     ^a  n e    > 0 \ + u X + p 

Xp 
a 

k    ' ^k 
« e  =• e    > 0 

(X + wk)' (X + pa)' 

by assumption.  Hence, 

g(2,k,a) - g(l,k,a) <^ 0 . 

c 

Therefore, If action k Is better than action a In state 1 (for k > a) , 

then action k Is better than action a in state 2 . 

Q.E.D. 

Theorem 3; 

cOi ) 
Assume K - 2 and A >   for at least one a , and V (1 + 1) - V (1) 

Wa •     o       o 

is nondecreasing In 1 , then switchover policy Is optimal. That is, there 

exists a t .ate J , 0 j< J ^ N , such that 

f (i) - 1 

f (1) - 2 

for 1 ^ J 

for 1 > J . 

Proof: 

Assume i is a state such that  f (1) • 2 , then 



20 

c(u2) 
-A+  I 

N-l-1   XJy        w 

J-0  (X + w )J+1      a 

+  I 
A. 

a 
2       M, cCy.) 
^-jrr e  v (N - i) < —-- - A + 

J-N-l (X + p0)
J+1     a       wi 

N-l-l   X^y 

j-0 (X + Vl)*
+1 

^(1 + J - 1) +  I 
lK 

j-N-i (X + vj**1 

1    ' yl e  XV (N - 1) a 

or 

c(u2)   ecu.)   N-i-i I   xK~      ~ w,      x^,      " r* 
;(if2,l) ? L.+  y 2    2 ^1 wl 

P2     ^1     jfo [(X + u2)
J+1        (X . u^1 

va(i + j - 1) + I 
A. 

a »v a 
Mi 

J-N-l |(X + w2) J+l (X + u^1 

V (N - 1) < 0 . a 

We now chow that g(l + 1,2,1) < 0 which Implies f*(l + 1) - 2 . 

g(l + 1.2,1) - 
c(yj  cCp.)  N-l-2 

V2        vl        jio 

vo(i + J) +  J 
J-N-l-1 

Vo(N - 1) . 

xK. 
(x + w2) 

xK. 

J+l 

(x + v2) J+l 

2    ^l " "ll 
" (x + u^1 *  J 

" (x + u^1 *  J 



g(l + 1,2,1) - g(i,2,l) 
N-l-1 

I 
j=0 

xK. -~       J 

(2.16) 

(X + w2)
j+1 

A
 ^ 
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(A + y^ J+l 

[vo(i + j) - voi(i + j - 1)] . 

Now, since 

h(j) 
A 2     " ^2     XJM1 

a 

Mi 

a + v2) i-n (x + P,)^
1 

changes sign from positive to negative,  £ h(j) > 0 , and V (i + j) - 
J-0 a 

Va(l + j - 1) < 0 then the negative teras in the right side of (2.16) dominates 

the positive terms.  Hence 

g(i + 1,2,1) - g(i,2,l) < 0 

g(i + 1,2,1) <^g(i,2,l) < 0 

or  £ (i + 1) - 2 . 

Q.E.D. 
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CHAPTER 111 

AVERAGE COST MODEL,TWO SERVICE RATES 

3.1 Introduction 

In this chapter we will consider the same queuelng system with the 

same cost structure, but  the criterion for decision rules will be to minimize 

the long run expected average cost.    We assume that only  two service rates 

p.   < y„    are available and the service rate can be switched either at an 

arrival or departure epoch during the process.    When service rate    p      Is In 

effect,  the-service time Is a random variable which Is exponentially distributed 

with mean    1/p    .    We will use methods of Ross as stated in the last chapter 

to  find  the  form of optimal policy. 

In Section 2 the existence  of stationary policy will be proved, and In 

Section 3 the form of the optimal stationary policy will be found.    An 

efficient computational method will be given In Section A.    In Section 5 

the problem of "hesitating customers," who join the queue with certain 

probability. Is analyzed and simple optimal policy is found. 

3.2 Existence of Stationary Policy 

We use the method of semi-Markov decision processes  to analyze the 

queuelng problem.    The state of the system, as in Chapter II, will be the 
c 

number of customers in the system and the action space Is K - {1,2} . The 

transition probabilities are the same as those given in (2.2). 

As was stated in Chapter I, under the following three conditions there 

exists an optimal stationary policy. 

(1)   c(l,a) , the expected cost during a transition interval. Is 

bounded. 

(ii)  |v (1) - V (0)| < M for all 1 and a and for some M < » . 

V (1) are as defined in Chapter II. 
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(ill)  E4T/X. = 1] ^ • , where T Is the cime of t'iL first return to 

state  i ,  X   is t^e initial state of the pyster. ;.nd  f  is 

a stationary policy. 

The optimal stationary policy can be found fron the opttmality conditions 

stated in Chapter I, and will be discussed later in this section.  Under 

conditions (i), (11), and (ill) this optimal policy will mlninize ^ (1) , 

the expected long run average cost starting from stale 1 , as defined in 

Chapter 1. 

Lemma 1; 

Conditions (1), (11) and (ill) hold for tht queucing problem. 

Proof; 

The proof of (1) is immediate.  (11) was proved in Chapter II (Lemma A). 

Since the chain, defined in part b of Lemma A, Chapter II, is irreducible 

and positive recurrent then the number of transitions before the first 

return to 1 is bounded for all 1 , and so is the expected time of each 

transition. Hence (ill) holds. 

Q.E.D, 

3.3 Derivation of Optimal Policy 

In this section we first modify the optimallty conditions for the 

queuelng system, and then the form of optimal policy will be derived. 

The optimal stationary policy is one which prescribes the minimizing 

action in the following equations. 

h(l) - min |c(i,a) + £ P (a)h(J) - gT(l,a)} 

P..(a) were defined in (2.2) and 
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71 

c(0,a)  - 0 

id.a) - T-r—l—— ' K\ 1  •  X,   • • • i  N 

Hence, 

T(O.a) - f 

T(i.«) - Y+T i " 1 N 

h(0)  - h(l)  - * 

h(i) - mln 

(3.1) 

!ci\i)  - W A          .                                     w                                    o        I 
 f-r — + Tl h(i + 1) + ,    '     h(l - 1) - r-5  

a                    a                                 Ka                                  a ) 

1-1 N-l 

h(N)  - mln 
|c(u )  - U A          p ) 
 Tl — + TZT— h(N - 1)  + T^ h(N)  - T-J  X + y            X + y X + y                  X + y( a                   a a                         a \ 

(3.1)  can be written aa follows: 

fg - Mh(l) - h(0)l 

inln 
a 

c(ya) - y A 

X + ya     ' x + wa 
(h(i + 1) - h(l)l - j^-- [h(l) - h(l - i)] 

 L 
X + w. 

- 0 1 - 1,  ..., N-l 

mln 
a 

[c(ya) - y^A y^ 

X + y r+~ü [h(N) - h(N - 1)1 -^-J--}. o 

or 
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g = X[h(l) - h(0)] 

~ min {c(y ) - y A + A[h(i + 1) - h(i)] - u [h(i) - h(l - 1)] - g} - 0 
A + y        a    a a 

a a 

1 «= 1, .... N-l 

,— min {c(y ) - y A - y [h(N) - h(N - 1) ] - g} = 0 . 
A + y        a    a    a 

a a 

Finally, since 
A + y 

> 0 for all a , (3.1) is equivalent to; 

(3.2) 

'g = Alh(l) - h(0)] 

[g = min {c(y ) - y A + A[h(i + 1) - h(i)] - ya[h(i) - h(i - 1)] } a    a a 
a 

i = 1 N-l 

g - min {c(y ) - y A - y (h(N) - h(N - 1)]} . 
Si & a 

\ a 

Derivations: 

The following lemma is proved using the stationary probabilities for 

the M/M/l queueing system without any use of semi-Markov decision process. 

The lemma is true for any K ^ 2 and gives the form of optimal policy in 

two special cases. 

Lemma 2: 

c(y )      c(y ) 
(a) If A > .    and —^- - min 

- Vt 'K acK m- then the optimal policy 
is to use y  in all states, where Vi ±. V? — "' — VK.  ' 

c(y1) 
(b)    If    A _<  —    and 

c(y1) 
  ■ min < >  ,   then the optimal policy 
1 a    (  ^a    J 

is to use    y.     In all states. 

Proof: 

Let J6.l    be the stationary probabilities of the queueing system, 
\ xn-o 

where ß  is the proportion of the time that the system spends in state  i . 
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Let (r, .r. r„)  be the set of service rates used in states (1,2, ..., N] 
12       N 

where r. e M • [y. yK] then 

ßi " T^o 

g »  i  a     n - 1,2, .... N 
n  r.r- r  0        * * 

1 /      n 

6-0     n > N 
n 

ß i  
0    X  x2         xN 1 + — + -i- + ... +  

rl  rlr2       rir2  rN 

We first show that ßN , the proportion of the time that system spends in 

state N , is decreasing in each r. . 

xN 

ß VL^IIN  
N           x                      xN 

i + — + ... +  
rl rlr2    rN 

Treating r 's as continuous variables we have 

 -j* r1+^+... +   i   i 
3^     r^    r^r^   rj      rl rl   rNj 
3^ ^ „ -.2 

L       rl rl    rNj 

 xl 
2 r r.  -r.r rNLrl    ri rl rNj i i-ri i+i 

L    rl rl  rnJ" 



27 

3ß„  r N   1 

- X 

r  r r 
i-1 i i+1 

-LA >^-l 
3r, 

ii+—+...+  
[   rl        rl  rNj 

< 0 

1 - 1,2, ..., N . 

Hence, ß  Is maximized it r. ■ u,  for all i , and minimized if r. = p» 

for all 1 . 

Let X  be the effective departure rate or long run average departure 

rate, then X - X(l - ß ) . Since c(r1)  is the cost rate when r.  is 

used then 

N 

I V(ri) 
i-1 

is the average service cost rate. The average return rate will be: 

N 
G - X(l - ß )A - [ ß.c(r.) 

w    1-1 ^^  1 

N 
Let g - max G -   max   jX(l - ßN)A - l    ß^Cr^J . 

(a)  g 

r^,<.. ,rj. 

r^y 

max 
r., • • • ,rj. 

r^u 

<   max 
Fj, • . . pTj. 

1-1 

N     c(r.) 
(1 - ß )A - l    ß r. —^- 

N    1-1 i i ri 

( ciur)    N    ) 

r^p 
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zö 

N 
Now since  ^ ß.r.  Is the long run avot-)ge service rate or the effective 

i-1 1 1 

service rate, then 

u 

l    ß r - X(l - ß ) . 
1-1 

Hence, 

(3.3) g <   max   A(l - dj  A M 
" r     r        N      PK 

fjCM 

C(U ) 
But by assumption A >^ 0 then, the right side of (3.3) is maximized 

UK 
if 6., Is minimized. 6„ is minimized if r. ■ \iu    for all 1 . Therefore, N N IK 

for this choice of rates the right side of (3.3) is maximum, but for the 

same choice of rates we will have equality in (3.3). 

Q.E.D. 

(b)   g -   max   {ä(1 - ß )A - [ M(r.)] 

( cdi.) N     ) 
<   ««   x(l - VA - —i. I ^rJ 

tjcp 

by assumption or 

(3.4) 
f       c(u Jl 

<       max       X(l - ßN) A --JJ-^ 
r. i«.. ,rj. L 1   J 

ritv 
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civ  ) 
Since A < 0 then the right side of (3.4) is maximized if &..    is 

maximized, but ßN is maximized if r. - y,  for all i , and for this 

choice of rates we have equality in (3.4). 

Q.E.D. 

Lemma  3: 

C(P2) - c(y1) 
Let    R ■ A  .     Then,  the optimal policy is  to use    y,     in 

W2 - ^1 1 

state    i    if and only if 

(3.5) h(i)  - h(l - 1) _< R . 

Proof; 

Let  f (i) be the optimal action when in state 1 , then f (i) = 1 

if and only if 

(3.6) 

c(y1) - y^ + Mh(i + 1) - h(i)] - y1[h(i) - h(i - 1)] < 

c(y2) - y2A + Xlh(i + 1) - h(i)] - y2[h(i) - h(i - 1)] 

or 

c(y9) - c(y1) 
h(i) - h(i - 1) < — - A . 

- u2'Vl 

Q.E.D. 

Theorem 1: 

c(ya) 
If A >_   for at least one of the rates, then there exists a 

wa 
state J f 0 £ J <_ N , such that 

f*(l) - 1     i - 1,2,. .... J-l 

f (1) - 2     i » J,J + 1, ..., N . 

That is, the optimal policy is switchover. 
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Proof: 

Let k be the smallest sr.atu such that f (k) ■ 2 and f (k - 1) •■ 1 

We consider two cases: 

Case 1; 

k ■ 1 , then 

(3.7) h(0) = h(l) - & 

(3.8) g - X(h(l) - h(0)] > XR 

by Lemma 3.     For state    1   , since     f  (1)  = 2 

(3.9) 

g - c(y2)  - ii2A + X[h(2)   - h(l)]  - M2[h(l) - h(0)] 

g  < c(y2)  - y2A + X[h(2)   - h(l)]  - v^R . 

From  (3.8)  and   (3.9) 

XR < c(ii2) - VJ2A + X[h(2)  - h(l)] - w2R 

or 

(3.10) XR + p2R - c(u2) + M2A < X[h(2)  - h(l)] 

cCu^)       c(iJ2) 
Now for      <^    we have    u9R - c(p,) + u9A >^ 0    since 

C(M2)  - c(y1) 
li2R -  c(w2)  + U2A - ii2  jp—JJ y2A -  c(ii2)  + u2A 

" U - yi' 7 
c(u2) " 7-^ c(vi> 

[p1c(y2)  - u2c(y1)]  >_ 0 
u2 - y1 

KJBBiMBaB&iam; 
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Hence,   from   (3.10) 

h(2)  - h(l)   > R 

* * 
or by Lemma  3,    f  (2)  ■ 2  .     Continuing in this manner we can show    f   (1)  = 2 

c(u2)  civ^) 
for i ■ 3,4 N .  But for   < by Lemma 2(a) we know M_ is 

optimal in all states.  This completes the proof for Case 1. 

Case 2: 

k ^ 2 .  By Lemma 3 

|h(k - 1) - h(k - 2) < R    f*(k - 1) - 1 

h(k) - h(k - 1) > R       f (k) - 2 

and for state    k    and    k -  1   , 

g -  c(u1)  - UjA + Mh(k)   - h(k - 1)]  - vi1lh(k - 1)   - h(k - 2)] 

[g - c(u2) - ii2A + Xlh(k + 1)  - h(k)] - ii2[h(k) - h(k - 1)] 

or by  (3.11) 

fg  >  c(y1)  -  UjA + AR -  y1R 

[g < c(u2) - w2A - w2R + A[h(k + 1) - h(k)] 

Then, 

c(y1)  - PjA + XR - UjR < c(u2)  - u2A - w2R + Xlh(k + 1)  - h(k)J 

or 

X[h(k +  1)  - h(k)]   < cdij)  -  c(u2)  -  (y1 - u2)k +  (u2 -  y1)R + XR 

But 
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(p2  -   ti1)R -   u ' t U'j'        (M^   -   "j^8 

H.ince, 

or     f   Ck + 1)  «= 2   .     Continuing   in  the  same manner we  can  show     t   (i /   -  / 

for     i  -  k. + 2 N    which  complt-tea  the  prndf  of  the   theoteu 

i'heorem  2; 

c(u  ) 
It     A  < —■—    tor    a  -   1.2   .     Then,   thpre  exists  a  state     i   , 

^a 
U  < J   <  N   ,  such that 

f   (1)   - 2 for    1   -  1,   .... .1   I 

t   (1)   - 1 for     1 - J,J + 1 N 

That  Is,   the optimal policy   lb a  reverse switchover. 

Proof: 

The proof is similar to the proof of Theorem 1.  Let k be tht- smallest 

* * 
state such that f (k) >• 1  and  f (k - 1) - 2 , consider two cabes; 

Case 1; 

k - 1 , f*(l) - 1 and 

h(l) - h(0) < R . 

For state 0 , 

(3.12) g - X[h(l) - h(0)] < XR . 

For state 1 , 
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g - civj - ^A + X[h(2)   - h(l)]  - y^hO)  - h(0)] 

(3.13) 
g >_ c(w1)  - w^ + X[h(2)   - h(l)]  - i^R  . 

From  (3.12) and  (3.13) 

(3.14) 

c(vi1)  - WjA + X[h(2)  - h(l)]  - ^R _< XR 

X(h(2)  - h(l)J   < XR + ^R - dvj + u^ 

But 

c(u2)  - c^) 
VjjR - c(v]1) + UjA - u^^ —— PjA - c(u1) + WjA 

. c(u1)      c(u7) 
-       [^CCMJ - u0c(w1)]  < 0 if -—i- > 

^-^-1-2'      ^2-1'^" ^     ^   u2 

Then (3.14) reduces to 

h(2) - h(l) < R 

* * 
or f (2) - 1 . Continuing in the same manner we can show f (i) * 1 for 

cdij^)  c(y2) 
i - 3,4, ..., N . If   <   then by Lemma 2(b) the optimal policy 

la to use u. in all states, which completes the proof of Case 1. 

Case 2; 

The proof is similar  to the proof of Case 2,  Theorem 1 and details are 

omitted here. 

3.4    A Computational Approach 

In the last section we proved that the optimal policy has a simple  form. 
c(ya) 

It uses (in the case A >   for some a) u. up to a state J - 1 and 
ua 

then it is switched to rate M. . We give a simple computation method to find 

J . 
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Let P. be the proportion of time the system spends using rate y,  in 

a given switchover policy.  Since the cost rate Is c(vi.) - y,A and 

c(vi2) - IJ?A for rates p.  and y. respectively then 

(3.15)    g - PjUO^) - WjA] + (1 - PJHCCMJ,) - M2A] 

where g is the average rate of return as defined before. Now let P^ be 

the proportion of time that the system spends using w1 where state j is 

the switching state, then 

*{ ■ T BJ 
1 i-i 1 

where    fr    are the stationary probability for this given policy 

i      X1    J ei" n: eo      11 J -1 
ui 

wj   y2
J 

ßj - 0 1  > N 

X                    X^"1          X^ XN 

1 + — +   ...   + ~-T + -~  +   . ..   + y, J-i    J-i    T *•• T   j-i N-j+i 
"i       "i  M2 Mi   w2 

We first compute 

pi p2 N 

Now If 

cCUj^)   - MjA _< c(w2)  - u2A 
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then in (3.13) we take P,  as J^rge as possible, and J is found from 

'i - 7 {pi} • 

And if 

cCWj)  - WjA > c(u2)  - iijA 

then  the optimal    J     is  found from 

pi'*?{*{)- 
i 

c(uB) 
The same method can be used in the case    A <   , a ■ 1,2   , except 

the switching is from rate    y.    to rate    u,   • 

3.5    The Hesitating Customers Problem 

In this section we assume that the arrival rate depends on the state of 

the system.    It Is assumed  the arrival rate is    AP.    when the system Is In 

state    1  , where    0 ^ P. _< 1  .    In other words an arriving customer will 

join the queue with a probability   P.    whenever the system Is in state    1  . 

The same cost structure Is considered and the service facility will be the 

same as in the last sections.    Let   H(l)    be the relative cost value corresponding 

to state    1  , equivalent to    h(l)    in the last sections, then the optimal 

stationary policy could be found from the following set of equations: 

fg - XP0[H(1)  - H(0)J 

(3.16) 

ig - min {c(u )  - p A + XP.(H(1 + 1)  - H(i)J  - v  [H(i)  - H(i -  1)]) 
i                                         B «I                    X                                                                         «1 

a 

1-1 N-l 

g - min {c(u  )  - u A - pfHW - H(N - 1)]}   . a a          a 
a 
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With this definition of relative cost  functions one can state  the equivalent 

of Lemma 3 as follows: 

Lemma 3'; 

c(ii?) - cd».) ^ 
Let R - = A then f (i) - 1 If and only if 

P2- ^ 

H(i) - H(l - 1) < R . 

The proof is immediate. 

Lemma 4; 

c(u ) 
If A >  —  for some a and H(0) - 0 , then H(i)  is nonincreasing 

~ 'a 
as a function of i . 

Proof; 

(3.17) g - XP0IH(1) - H(0)] - XP0H(1) . 

c(u ) 
But A >_ 2- then, g ^ 0 and H(l) <^ 0 . Now it can easily be shown chat 

^a 
V (i)    as defined in Chapter II is nonincreasing for the hesitating customers 

a 

problem and since    H(l)    has the same structural form as    V (1)     (see Ross  [13]) 

then   H<i)    will be nonincreasing. 

Q.E.D. 

Theorem 3: 

c(u ) 
If the    P.'s    are Increasing In    1    and    —  < A   for at least one    a 

c(w1)      c(p2) 
and     <  ,  then the switchover policy Is optimal for the hesitating 

ul w2 

customers problem. • 
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Proof; 

Let k be the smallest state such that  f (k) « 2 and  f (k - 1) ^ 1 , 

we prove the theorem in two cases as we did In the proof of Iheorem 1. 

Case 1: 

k - 1 . 

(3.18) g - XP0[H(1) - h(0)] > XP0R 

by Lemma 3'.     Note  that since    g  < 0    then    R  < 0  .     For state     1 

g - civ2)  - P2A + XP1IH(2)  - H(l)]   -  P2[H(1)  - H(0)] 

(3.19) 
< c(y2)  - u2A + XP1[H(2)  - H(l)]  - p2R . 

From  (3.18)  and   (3.19)  we have 

C(M2)   -  u2A + XP1[H(2)   - H(l)l   -  M2R >  XPQR 

or 

(3.20) XP1(H(2)   - H(l)]  > XPQR + MjR -  c(w2) + M2A . 

But by assumption 

W2R - c(p2) + IJ2A - -    _'tii  [c(ti2)  - c(w1)l  - u2A - c(w2) + u2A 

lu,c(u~) - w-cCu,)) > 0 . v2 - u^-r^'    ^"^i" - 

Hence,   (3.20)   reduces to 

P 
H(2)  - H(l)  > ^ R 1 R . 

1 
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P0 
Since R < 0 and — <_ 1  , or    f (2) = 2 . Continuing In the same way It 

*   1 
can be shown  f (1) - 2 for all i >_ 2  . 

Case 2: 

k ^ 2 , then 

H(k - 1) - H(k - 2) < R 
(3.21) 

H(k) - H(k) > R 

and R _< 0 . 

For state    k - 1    and    k   we have 

g - c(u1)  -  v^A + P^XlHCk)  - H(k -  1))  - y1(H(k - 1)  - H(k - 2)] 

g -  c(u2)   -  M2A + PkX[H(k + 1)   -  H(k)J   - w2[H(k)  - H(k -  1)] 

or by (3.21) 

g >  cCiij) - i^A + P^XR - UjR 

g  < c(u2)  - W2A + XPklH(k + 1)  - H(k)l  - IJ2R 

or 

c(ii2) - M2A + XPk[H(k + 1) - H(k)l - w2R > cdij) - »ijA + XPk_1R - w^ 

or 

XPk[H(k + 1) - H(k)l   > XP^jR 

Pk-1 H(k + 1)  - H(k)   > -~ R ^ R . 
rk 

Pk-1   ., _       . Since    R ^ 0    and   -r=— <^ 1  .    Therefore,    f (k + 1) - 2  .    Continuing in 
k 

Che same manner it can be shown    f  (1)  - 2    for all    1 ^ k + 1  . 

Q.E.D. 
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r.(ua) 
Now,  let  us assume that    A  <      for    a - 1,2  .     Then Lesrna 3'  still 

^a 
hold.     Equivalent of Lemma 4 can be  stated as follows and  the proof is 

similar to the proof of Lemma 4. 

Lemma 4 •. 

c(iia) 
If    A <      for    a " 1,2   ,  then    H(i)    is nondecreasing. 

a 

Theorem 4; 

c(ya) 
If the    PJ'

8
    are increasing in    i  , A <     for    a •  1,2  , and 

^a 
cdij)     C(M1) 
  <^  ,  then the optimal policy for the hesitating customers problem 

is reverse switchover.    Proof of this theorem is similar to the proof of 

Theorems 2 and 3.    Details are omitted here. 
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CHAPTER IV 

AVERAGE COST MODEL, K  SERVICE RATES 

A.I Introduction 

In this chapter the results of Chapter III will be generalized for the 

K service rates, W, j^ p» £ ... .1 VV • The cost structure Is the sane. I.e., 

c(u. ) Is the cost rate of using service rate p. .  It Is assumed that c(*) 

is a nondecreasing function.  A reward of A is earned for each customer 

served.  Again the method of semi-Markov decision processes Is employed In 

order to minimize the long run expected average cost. The state of the system 

Is the number of customers in the system and the action space is 

K •»  {1,2, ..., K} . The arrival stream as before Is the Polsson process with 

rate X and the service time Is exponentially distributed with expected 

service time 1/y.  whenever rate y.  Is In effect. The results of Section 2, 

Chapter III for the existence of optimal stationary policy are true for K 

rates case and will not be repeated here. The modifications of optlmallty 

conditions which were made In the two rates case will still hold and will be 

stated below. 

* 
If ir  is the policy which prescribes the minimizing actions in the 

following relations, then this policy is stationary and minimizes the long 

run expected average cost. 

fg  - X[h(l) - h(0)l 

(4.1) 

g - mln {c(p ) - w A + X[h(l + 1) - h(l)] - u [h(l) - h(l - 1)]} 
aeK   a   a * 

i - 1,2 N-l 

g - min {COJ ) - u A - un[h(N) - h(N - 1)]} 
aeK 

In the next section we will first eliminate some of the service rate from 

further considerations because they will not appear In the optimal policy, and 

then the form of optimal policy will be derived. 
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A.2    Elimination of N'onoptlmal   Rates and Derivations 
of Optimal PoJicy 

In Chapter III, Lenuna 2, we showed In certain cases  some service rates 

will not be used in the optimal policy.     For example If  the function    c(:) 
c(u  ) 
— for some a , then the optimal policy is to use is concave and A > 

rate y  , the fastest rate, in all states. Lemma 2 Is in fact more general 

than this.  If the service rates are such that the points (p^.cd^)) all 

lie above the line connecting origin and point  (wK,c(wK))  then, only y^ 

will be used in the optimal policy. We now in a sequence of five lemmas 

eliminate some nonoptimal rates. 

Let C be the set of all points  (Wj,»0^!,^ » and consider the piece- 

wise linear convex function H joining (li-.cdi,))  and  (viK,c(wK)) which 

bounds the set C from below and changes slope only at the points of the 

set (see Figure 1). 

c(uK) 

c(wk) 

c(ut) 

cdij) 

u1w2 

FIGURE 1: SET C OF POINTS  (w ,c(p )) AND FUNCTION H 
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Lemma 1; 

The set of service rates corresponding to the points  (iv,c(p. )) not 

on the function H (above H) will not be used in the optimal policy and 

can be eliminated. 

Proof; 

f (1) « k   ,  i.e., rate    y.     is optimal in state    1     if, 

(4.2) 

c(uk)   - MkA + X[h(i + 1)   - h(i)]   - pk[h(i)  - h(i - 1)J   < 

c(pj)  - vijA + X[h(i + 1)  - h(i)]  - vijlhd)  - h(i - 1)1 for all    j * k 

or 

c(wk)  - wkA - cOij) + PjA <  (yk - p )[h(i) - h(i - 1)J for    J »« k 

or 

c(w. )  - c(y.) 
 J- - A   if   y.   > p. 

yk - Pj k       j 

c(y.)  - c(y. ) 
i(i) - h(i - 1)  < i =- - A   if   y1 > y,, . 

Mi ' wk j      Hk 

(4.3>  can be stated as follows 

(c(u.) - c(y ) ) 
max J * —J- _ AJ < hd) _ hd - 1)  < 

0-1.2 k-1 ^k " MJ ) 
(A.4) . 

(c(y,)  - c(yk) 
min { J — - A} . 

j-k+1 K (      ^J  " Mk 

Now assume that     (yk,c(p, ))     is above    H  , and let    y      be the largest rate 

to the left of    y.     .here    (y   ,c(y  ))     is on    H    and    y      be the smallest rate 
K mm n 

to the right of    y.     an.1    (j   ,c(y  ))    on    H    (see Figure 2). 
K n       n 
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c(yn) 

c(pk) 

^m        ^k 

FIGURE  2 

Then  fro'" definition of    H   , 

c(u.)  - c(u  )       c(ii^)  -  c(ii.) K               m               n               K   >   
^k" »m Wn- Uk 

or 

c(y. ) - c(u  ) cC»i„) - civ.) 
A n K        . 

yk-   WB wn- Wk 

But this violates (A.4). Therefore,  f (i) « k is not possible and p.  will 

not be optimal in any state and can be eliminated. Now let 

y. < y« < ... < y. be those rates such that the corresponding (u.cdi)) 

points are on H .  (Rearrange the indexes so that this is true.)  Then, 

cdO - cCuj)      cCw.) - c(y2)           
C
(

IJ
L^ ~ C

^
1J
L-1^ 

(A. 5)  ~ A < A < ... < A . 
w2 - w1 ^3-^2 WL " UL-1 
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We define 

c(w.) - c(p  .) 

Lemma 2: 

f*(i) - j if and only if 

c(ii.) - c(vi  .)                       C^44.l) " c^^ 
(4.7)   J ^L^- - A < h(i) - h(i - 1) <  J^ ■»- - A 

WJ " uj-i "    Vi ■ UJ 

or 

R < h(i) - h(i - 1) 1 RJ+1 • 

The proof of this lemma is immediate from (A. ,  d (4.5). 

The following two lemmas are needed to prove Lemma 5 and Theorem 1. 

Lemma 3; 

Let  (r., .... r„) be the optimal rates in states  (1,2, ..., N)  for 
1       N 

a given cost function c(u1) < ... < cdi.) , and assume rate u  is not used 

in the optimal policy. Now let us consider a new problem with the same 

structure but a different cost function c'C«) , where 

c'O^) - cO^)     1 *  t 

c,(wt) > c(wt) . 

Then u  is not used in the optimal policy for the new problem. 

Proof; 

The lemma is intuitively clear since increasing the cost of a nonoptimal 

rate should not change the optimal policy.  Formally, let B. be the stationary 
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probability,  the proportion of  time  the system spends  in state    i   ,  as 

defined in Chapter III,   then 

N 
g -    [     ß.c(r  )   -  A(l -  ß )A 

i-1 

where g  is the minimal average cost rate, and  (r.»r«, ..., rN) are the 

set of optimal service rates.  Now assume that a different set of rates 

(r',r', ..., r') aro optimal for the new problem and ß^'s are the 

corresponding stationary probabilities.  Then if u  is used in the optimal 

policy in state J • g*  the optimal cost rate for the new problem is 

N 
g* • l    ß;c(r!) - X(l - ß')A < g . 

i-1 i  i N 

(g is an upper bound since  (r.,^, ..., rN) can be used for the new 

problem which gives the cost rate equal to g .) Then 

g' - I BlcCr!) + ß!c'(u ) - X(l - ß')A 
l5<j  i  1    J   t N 

(4.8) 
> l ßMr!) + ßlcüi ) - X(l - ß')A . ^j  i  1    J  t N 

But the right side of (4.8) Is the cost rate using the original cost function 

and gives lower cost rate than g , which contradicts the fact that g was 

the optimal cost rate. 

Q.E.D. 

Lemma A: 

c(wk)     (c(uU 
  - min < > , Uk    a K ) 

Let c - —  - min <— > , a - 1,2, ..., L and c < A . Then 

(4.9) g > A(c - A) . 
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Proof; 

This is also Intuitively clear since the right side of (4.9) Is the 

negative of maximum return when the cheapest rate Is used and all arriving 

customers are served. Let ß, be as defined In Lemma 3, then If 

(r.,r., ..., r ) Is the set of optimal rates 

8-1 M^) - ^ " ^A - I r.ß, —-^ - A(l - ß )A 
1-1 1  1 N    1-1 1 i rl N 

N 
>, c [ r1ßi - X(l - ßN)A - X(l - ßN)(c - A) > A(c - A) . 

The last Inequality follows from the fact that 

3N>0. 

Q.E.D. 

Lemma 5: 

^-„ln|^4. 
^k    a ( w« ) 

cl 
Let c •     - mln I——=-> , a ■ 1,2, ..., L , and c £ A then 

all rates \i     such that M^ < P^ can be eliminated from further consideration. 

Proof; 

This lemma is a generalization of Lemma 2, Chapter III. 

Let us assume for simplicity that k ■ 2 . We must show y. will not 

be used in the optimal policy. 

Consider the same system with the same service rates available but a 

different cost function as follows: 

c(y2) 
jc'Ciij) • cpj^ where c - —  , cdi,) > cy- 

c'dij) - c(yi)     1-2 L 
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(see Figure 3) . 

FIGURE 3 

Function H : ABCX , the cost function for 
the original problem, c(a) . 

Function H*: OBCX , the cost function for 
the new problem, c'C») . 

We first show that y. will not be used In the optimal policy for the 

new problem. The proof of the lemma then follows from Lemma ^. In order 

for M.  to be optimal In a state 1 In the new problem we must have 

c(y.) - CM. 
h(l) - h(i - 1) 1 =-:  - A - c - A . 

U2 ' Vl 

By Lemma A 

(4.10) g - \[h(l) - h(0)] > X(c - A) 



''.J 

llfcll 

h(l)   - h(Ü) - ^ > c - A . 

* 
fherefore,     f  (1)  ^ 1  .     Now consider  two cases; 

( ase  1: 

f*(l)  - 2   ,  then 

g -  c(u2)   -  M2A +  X[h(2)   - h(l)J   -  u2lh(l)   - h(0)J 

by   (4.10) 

g  < c(ii2)  - u2A + Mh(2)  - h(l)J  - u2(c  - A) 

and 

A(c - A)   < c(vi2)   - M2A + Xlh(2)  - h(l)]  -  p2(c - A) 

X[h(2)  - h(l)J   >  X(c - A) + w2(c - A)  - C»J2 + W2A 

h(2)  - h(l)   > c - A . 

* 
Therefore,    f (2) ^ 2  . 

* 
Now,  let    f  (2) - t    where    t > 2  .    For state    2    we have 

g - c(ut) - jitA + X[h(3) - h(2)]  - ut[h(2)  - h(l)] 

< c(ut) - wtA + X[h(3)  - h(2)]  - ptRt   . 

Then by  (4.10) 

X(c - A)   < c(ut)   - UtA + X[h(3)  - h(2)]   - ut\ 



or 

(4.11) X[h(3)  - h(2)]   >  A(c - A) + wtRt - c(ut)  + W/ 

But 

utRt - c(pt) + wtA - —A—tc^) . c(Vti)] . c(Pt) 

l^_iC(M..)   - M^c(yfc_1)]   > 0 yt - ^^'-t-r^t'       ptWXHt-l,J - 

since for    t ■  2 

vl'c'v2 ' U2*C,lJl " 0 

and  for    t  > 2 

c(Mt)      c^t_i) 
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^t        Vi 

(H*    being convex and passing through origin, see Figure 3.)    Hence,   (4.11) 

reduces to 

h(3)  - h(2)  > c - A   or    f*(3)  > 2  . 

Continuing in the same manner we can show 

f (1) 1 2     for 1 - 3,4 N 

Case 2: 

* 
f (1) - t where t > 2 . Then h(l) - h(0) > R > c - A 

g - X[h(l) - h(0)l > ARt . 



M) 

v'iv  siaLe 1 

g = c(Mt) - PtA -f \[l{2)   -  h(l)J - Ptlh(l) - h(0)) 

and 

g < c(lit) - VijA + A[h(2) - h(l)] - ut\ 

i lien 

ARt < c(vit) - MtA + X{h(2) - h(l)] - utRt 

X(h(2) - h(l)) > XRt + utRt - c(vit) + MtA . 

.ut 

WtRt " C(wt) + ^[A 1 0     for t > 2 

is was shown In Case 1. Hence, 

h(2) - h(l) > Rt or f*(2) >_ t . 

* 
Continuing In the same way It can be shown    f   (1)  > t    for    1 ■ 3,4 N . 

Tills completes  the proof of the  lemma  for the new problem, but by Lemma 4 

the same will be true  for the original problem. 

Q.E.D. 

By this lemma we can now assume that H passes through origin and 

du^     c(w2)       
c^ui} 

< < ... < 
Ml -   »2      - -   VL 
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Theorem 1; 

Let    y.   < ii-  <  ...   < y.     be    L    service rates such that 

R- < R_ < ...   < R.   , where    R 's    are as defined in (4.6).    Then    f  (i)    is 

a nondecreaslng function of    i   ,  i.e.. 

f*(l)   < f*(2)   <  ...   < f*(N) 

which is a generalization of switchover policy. 

Proof; 

We show that if    f  (1) = t    then    f   (J) ^ t    for all    j   > i  .    We 

consider two cases: 

Case 1: 

* 
If    f  (1)  = t    then by Lemma 5, Cases 1 and 2, 

f*(i)  > t for all    i > 1 

Case 2; 

*     * 
Now let i be the smallest state such that f (i) > f (1) , N ^ i > 1 . 

Assume that f (i) - k and f (i - 1) - t where t < k .  For state i - 1 

and i we have 

c(iO - c(u .)                       c(n»4.i) - c(vJ 
R .  E IZL- - A < h(i - 1) - h(i - 2) <  ^i —  - A - R ^ 

c(yk) - c(y.  ) cK+i) " 
c<^) 

U -  ~ ^-^ -  A < h(i) - h(i - 1) <  ^i =- - K ' K^ 
*    ^k " ^k-l -  Mk+1 " \ ^+1 

|g - c(yt) - ytA + X[h(i) - h(i - 1)] - yt[h(i - 1) - h(i - 2)1 

'g - cCy,,) - y^A + X[h(i + 1) - h(i)] - yu[h(i) - h(i - 1)] . 

But 
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\ 1 Rt+1 > *t     k > t + 1 

then 

(g > c(yt) " UtA + X^ - u^ 

8 <  c(wk) ' ykA + x[h(i + ^ " h(1)1 " ukRk 

or 

c(Mk) - ykA + X[h(i + 1) - h(l)] - w^ > cCy^ - i^A + XI^ - y^ 

(4.12)  X[h(l + 1) - h(i)] > -c(yk) + c(Mt) + ykA - v^A + XF^ + (yk - y^I^ 

But 

c(yk) - ^(yj^j^)  c(yk) - c(ut) 
(yk - y,)^ - (c(.k) - c(yt)] + (yk - yt)A -   ,      ^ y - y    1 0 

k   k-1        k   t 

the last Inequality holds by Lemmas 1 and 5. Then, (4.12) reduces to 

h(l + 1) - h(l) > 1^ 

or 

£*(! + 1) >_ k . . 

Continuing In the same manner we can show f (J) ^ k for J ■ 1 + 1, 

14-2, ..., N , which completes the proof of Theorem 1. 

c(y ) 
Now consider that A <  for all a , then Lemma 3 will still hold, 

and the equivalent of Lemma 4 Is Lemma 6. 

Lemma 6: 

c(y.) 
Let    c -  =- ■ mln 

a 

Jc(Ua) 
K 

g < A(c - A)   . 

a - 1,2, ..., L and c > A then 
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Proof; 

Let 6. be the stationary probability corresponding to using M.  In 

all states then 

(t)_ 
it) 

h -^ TTJ       £or 1-N 
i + — + ... + 

6.-0     for 1 > N 

and let G be the corresponding average cost rate then 

g < G - A(l - BN)(c - A)< X(c - A) 

since 0 > 0 . 

The following lemma Is the equivalent of Lemma 5 for the case 

Q.E.D. 

c(wj 
A <   '  for all a . 

a 

Lemma 7: 

^ - mm P4 
Mk    a ( "a ) 

cl 
Let c ■ ^ ■ mln < =-> and c > A then all rates faster than 

p. (v > w. ) can be eliminated from further consideration. 

Proof; 

This lemma is intuitively      clear since all rates faster than    v.     are 

■ore expensive and their use will increase the rate of number of customers 

served. 

The proof closely follows the method to prove Lemma 5.     First we consider 

a new problem with the cost of rates  faster than    u,     reduced to    c*u.    and 
11 J 
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show for this problem the optimal policy does not use rates p. , p. > Mk > 

and then by Lemma 3 complete the proof. Details are omitted here. 

Theorem 2; 

Let y. < p. < ... < y. be L service rates such that all nonoptimal 

rates are eliminated and R» < R, < ... < R. then f (i) is nonincreasing 

function of 1 , i.e., 

f*(l) >. f*(2) 1 ... 1 f*(N) . 

Proof: 

* * 
It will be shown that if    f (i) - t  ,  then    f (J) 1 t    for all    j  > i  • 

Details are omitted here since method of proof Is closely related to the proof 

of Theorem 1 of this chapter and Theorem 2 of the last chapter. 
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